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Abstract 

With the increasing role of computational modeling in engineering design, 
performance estimation, and safety assessment, improved methods are needed for 
comparing computational results and experimental measurements. Traditional 
methods of graphically comparing computational and experimental results, 
though valuable, are essentially qualitative. Computable measures are needed that 
can quantitatively compare computational and experimental results over a range 
of input, or control, variables and sharpen assessment of computational accuracy. 
This type of measure has been recently referred to as a validation metric. We 
discuss various features that we believe should be incorporated in a validation 
metric and also features that should be excluded. We develop a new validation 
metric that is based on the statistical concept of confidence intervals. Using this 
fundamental concept, we construct two specific metrics: one that requires 
interpolation of experimental data and one that requires regression (curve fitting) 
of experimental data. We apply the metrics to three example problems: thermal 
decomposition of a polyurethane foam, a turbulent buoyant plume of helium, and 
compressibility effects on the growth rate of a turbulent free-shear layer. We 
discuss how the present metrics are easily interpretable for assessing 
computational model accuracy, as well as the impact of experimental 
measurement uncertainty on the accuracy assessment. 
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Nomenclature 

C = confidence level chosen, C = lOO(1-  a)% 

= average confidence indicator normalized by the absolute valcle of the estimated l:lavg 
experimental mean over the range of the experimental data, see Eq. (22) 

experimental measurements, y ,  - p 

experimental measurements, y ,  - y ,  

E = true error of the computational model as compared to the true mean of the 

= estimated error of the computational model as compared to the estimated mean of the 
- 

- 
E 

N 

= average of the absolute value of the relative estimated error over the range of the IHg 
experimental data, see Eq. (21)  

= maximum of the absolute value of the relative estimated error over the range of the 

experimental data, see Eq. (23) 

= F probability distribution, where v ,  is the first parameter specifying the number of 
degrees of freedom, v ,  is the second parameter specifying the number of degrees of 
freedom, and 1 - a is the quantile for the confidence interval chosen 

= number of sample (experimental) measurements 
= sample (estimated) standard deviation based on n experimental measurements 
= system response quantity 
= t distribution with v degrees of fi-eedom, v = n - 1 
= 1 - a / 2  quantile of the t distribution with n degrees of freedom, v = n - 1 

= sample (estimated) mean based on n experimental measurements 
= mean of the SRQ from the computational model 
= arbitrarily chosen total area from both tails of the specified distribution 
= population (true) mean from experimental measurements 

= vector of coefficients of the chosen regression function, Eq. (27) 

= vector of regression coefficients that minimize the error sum of squares, Eq. (29) 



1. Introduction 

It is common practice in all fields of engineering and science for comparisons between 
computational results and experimental data to be made graphically. The graphical comparisons 
are usually made by plotting some computational system response quantity (SRQ) along with the 
experimentally measured response over a range of some input parameter. If the computational 
results “generally agree” with the experimental data, the computational model is commonly 
declared “validated.” Comparing computational results and experimental data on a graph, 
however, is only incrementally better than making a qualitative comparison. With a graphical 
comparison, one rarely sees quantification of the numerical solution error or quantification of 
computational uncertainties, e.g., due to variability in modeling parameters, missing initial 
conditions, or sensitivity to poorly known boundary conditions. In addition, an estimate of 
experimental uncertainty is not typically quoted, and in most cases, it is not even available. A 
graphical comparison also gives little quantitative indication of how the agreement between 
computational results and experimental data varies over the range of the independent variable, 
e.g., a spatial coordinate, time, Reynolds number, or Mach number. Further, a simple graphical 
comparison is ill-suited for the purpose of quantitative validation because statistical methods are 
needed to quantify experimental uncertainty. It should be noted that some journals, such as those 
published by the AIAA and the American Society of Mechanical Engineers (ASME) now require 
improved statements of numerical accuracy and experimental uncertainty. 

The increasing impact of computational modeling on engineering system design has 
recently resulted in an expanding research effort directed toward developing quantitative 
methods for comparing computational and experimental results. In engineering and physics, the 
form of the computational models is predominantly given by partial differential equations 
(PDEs) with the associated initial conditions and boundary conditions. Although statisticians 
have developed methods for comparing models (or “treatments”) of many sorts, their emphasis 
has been distinctly different from the modeling assessment perspective in engineering. Some of 
the earliest work in quantitative validation, from an engineering perspective, was done by Geers’ 
in structural dynamics. Much of the recent work has been conducted as part of the Department of 
Energy’s Advanced Simulation and Computing (ASC) Program, Verification and Validation 
Element. References 2 and 3 argue that quantification of the comparison between computational 
and experimental results should be considered as the evaluation of a computable measure or a 
variety of appropriate measures. They refer to these types of measures as a validation metric and 
recommend that both uncertainties and errors should be quantified in the comparison of 
computational and experimental results. The input data to the metric are the computational 
results and the experimental measurements of the same SRQ of interest. Uncertainties refer to 
quantities that are either a random variable, e.g., random measurement uncertainty in 
experiments, or unknown quantities due to lack of knowledge, e.g., a boundary condition not 
measured in an experiment but needed for input to the computational model. In the literature, the 
former are sometimes referred to as variabilities and the latter as uncertainties. Errors are usually 
due to numerical solution inaccuracies such as lack of spatial grid convergence and lack of time- 
step resolution in unsteady phenomena. References 2 and 3 argue that validation metrics should 
only quantify agreement between computational and experimental results. Metrics should not 
address the issue of adequacy of agreement between computational and experimental results, nor 
should they address the requirements of accuracy for a particular application of the 
computational model. 

This paper develops a validation metric based on the concept of statistical confidence 
intervals. We begin with a review of the terminology of verification and validation by 
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distinguishing between code verification, solution verification, validation metrics, model 
calibration, and adequacy of a model for its intended use. We then briefly review the 
perspectives of hypothesis testing in statistics, Bayesian statistical inference, and the recent 
engineering perspective in validation metrics. In Sec. 3, we recommend features that should be 
incorporated, or addressed, in validation metrics. We then discuss our perspective for 
constructing our confidence-interval-based validation metrics, e.g., situations where we believe 
our metrics may and may not be useful. In Sec. 4, we review some of the basic ideas of statistical 
confidence intervals and construct a simple validation metric. We then apply this metric to an 
example of thermal decomposition of a polyurethane foam. Sec. 5 extends the fundamental idea 
of the validation metric to the case where the SRQ is measured in fine increments over a range of 
the input parameter. These increments allow us to construct a continuous function of the 
experimental measurements over the range of the input parameter. We apply this metric to the 
example of a turbulent buoyant plume of helium. In Sec. 6, we develop the metric for the 
situation where the experimental data are sparse over the range of the input parameter. This very 
common engineering situation requires regression (curve fitting) of the data. We apply this 
metric to the example of compressibility effects on the growth rate of a planar turbulent shear 
layer. Sec. 7 provides some observations on the present contribution and recommendations for 
future work. 

2. Review of the Literature 

2.1 Review of the Terminology and Processes 
The terms “verification” and “validation” have a wide variety of meanings in the various 

technical disciplines. The AIAA, through the Computational Fluid Dynamics (CFD) Committee 
on  standard^,^ the work of R ~ a c h e , ~ . ~  and Refs. 3 and 8, has played a major role in attempting to 
standardize the terminology in the engineering community. This paper will use the AIAA 
definitions4: 

VerEfication: The process of determining that a model implementation accurately 
represents the developer’s conceptual description of the model and the solution to the model. 

Validation: The process of determining the degree to which a model is an accurate 
representation of the real world from the perspective of the intended uses of the model. 

The definition of verification makes it clear that verification addresses the accuracy of the 
numerical solution produced by the computer code as compared to the exact solution of the 
conceptual model. In verification, how the conceptual model relates to the “real world” is not an 
issue. As Roache6 stated, “Verification deals with mathematics.” Validation addresses the 
accuracy of the conceptual model as compared to the “real world,” i.e., experimental 
measurements. As Roache6 stated, “Validation deals with physics.” 

Verification is composed of two types of activities: code verification and calculation 
verification. Code verification deals with assessing a) adequacy of the numerical algorithms to 
provide accurate numerical solutions to the PDEs assumed in the conceptual model and b) 
fidelity of the computer programming in implementing the numerical algorithms to solve the 
discrete equations. (Note: When we refer to the solution of the PDEs, we imply that the given 
boundary conditions, initial conditions, and any required auxiliary equations, such as turbulence 
models or constitutive equations, are also included in the computational model.) Currently, the 
primary strategy is to detect shortcomings in the numerical algorithms or errors in the computer 
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code, such as coding mistakes, by evaluating the numerical solution error using known, exact 
solutions. The evaluation is typically conducted by comparing solution results with classical 
analytical solutions and exact solutions to similar problems using the Method of Manufactured 
Solutions (MMS). The precision of the comparison is greatly enhanced by evaluating the 
observed order of accuracy and comparing it with the theoretical order of accuracy. Also 
employed in code verification are the techniques and tools used by the software quality assurance 
(SQA) community. Needless to say, code verification is difficult and costly not only because of 
many practical reasons, but also because of the coupling of two logically distinct issues: 
numerical algorithm adequacy and computer programming fidelity. (See Refs. 3 ,  8, and 9 for a 
discussion of numerical algorithm verification and SQA practices in code verification). 

Calculation verification deals with the quantitative estimation of the numerical accuracy 
of solutions to the PDEs computed by the code. The primary emphasis in calculation verification 
is significantly different from that in code verification because there is no known exact solution 
to the PDEs of interest. As a result, we believe calculation verification is more correctly referred 
to as numerical error estimation. That is, the primary goal is estimating the numerical accuracy 
of a given solution, typically for a nonlinear PDE with singularities and discontinuities and 
complex geometries. For this type of PDE, numerical error estimation is fundamentally empirical 
(a  posteriori), Le., the conclusions are based on observations, evaluations, and analysis of 
solution results from the code. A posteriori error estimation has primarily been approached 

or recent advances in error estimation through the use of either Richardson extrapolation 
techniques based on finite element approximations. 15-17 Richardson extrapolation estimates the 
numerical error based on analysis of two or more numerical solutions obtained on grids of 
different spatial or temporal resolution. The method can be applied to any discretization 
procedure for differential or integral equations, e.g., finite difference methods, finite element 
methods, finite volume methods, spectral methods, and boundary element methods. Richardson's 
method can be applied, essentially as a postprocessing step, to any SRQ computed from the 
numerical solution. The primary disadvantage of Richardson's method, however, is that it is 
relatively expensive compared to a posteriori error estimation methods used in finite elements 
because multiple solutions are required in the asymptotic convergence region. 

As a logical principle, code verification and numerical error estimation should be 
completed before model validation activities are conducted, or at least before actual comparisons 
of computational results are made with experimental results. The reason is clear: We should have 
convincing evidence that the computational results obtained from the code reflect the physics 
assumed in the models implemented in the code and that these results are not distorted or 
polluted due to coding errors or large numerical solution errors. Although the logic is clear 
concerning the proper order of activities, there are examples in the literature where coding or 
solution errors discovered after-the-fact invalidated the conclusions related to the accuracy or 
inaccuracy of the physics in the models being evaluated. Stated differently, if a 
researchedanalyst does not provide adequate evidence about code verification and numerical 
error estimation in a validation activity, the conclusions presented are of dubious merit. If 
conclusions from a defective simulation are used in high-consequence-system decision making, 
disastrous results may occur. 

Ongoing work by the ASME Standards Committee on Verification and Validation in 
Computational Solid Mechanics is attempting to clarify that model validation should be viewed 
as two steps": 1) quantitatively comparing the computational and experimental results for the 
SRQ of interest and 2) determining whether there is acceptable agreement between the model 
and the experiment for the intended use of the model. The first step in validation deals with 
accuracy assessment of the model, which we will refer to as evaluation of a validation metric. A 
validation metric is a measure of agreement, or equivalently a measure of the difference, between 

6,9,10 
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a computational SRQ and an experimental SRQ. The SRQ from the experiment is typically given 
as an estimate of the true value and, hopefully, with an estimate of the uncertainty. 

The left-center portion of Fig. 1 shows the first step in validation. The figure illustrates 
that the same SRQ must be obtained from both the computational model and the physical 
experiment. The SRQ can be any type of physically measurable quantity, or it can be a quantity 
that is based on, or inferred from, measurements. For example, the SRQ can involve derivatives, 
integrals, or more complex data processing of computed or measured quantities such as the 
maximum or minimum of functionals over a domain. When significant data processing is 
required to obtain an SRQ, it is important to process both the computational results and the 
experimentally measured quantities in the same manner. The computational and experimental 
SRQs are input to the mathematical procedure used to compute a validation metric. In this paper, 
when we refer to the "validation metric," we usually mean the mathematical procedure that 
operates on the computational and experimental SRQs. The SRQs are commonly one of two 
mathematical forms: 1) a deterministic quantity, Le., a single value, such as a mean value or a 
maximum value over a domain; or 2) a probability measure, such as a probability density 
function or a cumulative distribution function. Each of these two forms can be functions of a 
parameter in the computational model, such as a temperature or a Mach number; a function of 
spatial coordinates, such as (x, y ,  z) in a three-dimensional domain; a function of time; or a 
function of both space and time. If both the computational and experimental SRQs are 
deterministic quantities, the validation metric will also be a deterministic quantity. If either of the 
SRQs is a probability measure, the result of the validation metric would also be a probability 
measure. 

Yes 
b 

Apply Computational 
Model to Application 

of Interest 

Fig. 1 Validation, calibration, and prediction. 

Another feature that should be stressed in Fig. 1 is the appropriate interaction between 
computation and experimentation that should occur in a validation experiment. To achieve the 
most value from the validation experiment, there should be in-depth, forthright, and frequent 
communication between computationalists and experimentalists during the planning and design 
of the experiment. Also, after the experiment has been completed, the experimentalists should 
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measure and provide to the computationalists all the important input quantities needed to conduct 
the computational simulation. Examples of these quantities are actual freestream conditions 
attained in a wind-tunnel experiment (versus requested conditions), as-fabricated model 
geometry (versus as-designed), and actual deformed model geometry due to aerodynamics loads 
and heating. What should not be provided to the computationalists in a rigorous validation 
activity is the measured SRQ. It is an irresistible basic instinct to tune adjustable parameters, 
both numerical and physical, in the computations to achieve agreement with experimental 
results. For an extensive discussion of the planning, design, execution, and analysis of validation 
experiments, see Refs. 3, 14, and 19-23. 

The second step in validation deals with comparing the validation metric result with the 
accuracy requirements for the intended use of the model. That is, validation, from a practical or 
engineering perspective, is not a philosophical statement of truth. The second step in validation, 
depicted in the right-center portion of Fig. 1, is an engineering decision that is dependent on the 
accuracy requirements for the intended use of the model. Accuracy requirements are, of course, 
dependent on many different kinds of factors. Some examples of these factors are a) the 
complexity of the model, the physics, and the engineering system of interest; b) the difference in 
hardware and environmental conditions between the engineering system of interest and the 
validation experiment; c) the increase in uncertainty due to extrapolation of the model from the 
validation conditions to the conditions of the intended use; d) the risk tolerance of the decision 
makers involved; and e) the consequence of failure or underperformance of the system of 
interest. Although the uncertainty estimation methodology and risk assessment issues involved in 
the second step are critically important in the application of a computational model for its 
intended use, these issues are beyond the scope of this paper. Here we deal only with the first 
step in validation: validation metrics. 

2.2 Review of Approaches 
Traditional approaches for quantitatively comparing computational and experimental 

results can be divided into three categories (here we exclude graphical comparisons). First, in the 
1960s, the structural dynamics community began developing sophisticated techniques for 
assessing agreement between computational and experimental results, as well as techniques for 
improving agreement. These latter techniques are commonly referred to as parameter estimation, 
model parameter updating, or system identification. Two recent texts that provide an excellent 
discussion of this topic are Refs. 24 and 25. In the approach followed by the structural dynamics 
community, certain model input parameters are considered as deterministic (but poorly known) 
quantities that are estimated by a numerical optimization procedure so that the best agreement 
between computational and experimental results can be obtained for a single SRQ or a group of 
SRQs. Multiple solutions of the computational model are required to evaluate the effect of 
different values of the model parameters on the SRQ. Although these techniques are used to 
compare computational and experimental results, their primary goal is to improve agreement 
based on newly obtained experimental data. 

The second approach is hypothesis testing or significance t e ~ t i n g . ~ ~ . ~ ~  Hypothesis testing 
is a well-developed statistical method of deciding which of two contradictory claims about a 
model, or a parameter, is correct. In hypothesis testing, the validation assessment is formulated 
as a “decision problem” to determine whether or not the computational model is consistent with 
the experimental data. The level of consistency between the model and the experiment is stated 
as a probability, based on what has been observed in comparing SRQs from the model and the 
experiment. This technique is regularly used in the operations research community for 
comparing mutually exclusive models. Hypothesis testing has recently been used by Hills and 
Trucano,28 Paez and Urbina,29 Hills and Leslie,30 Dowding et al.,31 Rutherford and D ~ w d i n g , ~ ~  
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and Chen et al.33 Two features of this recent work are noteworthy. First, a validation metric is not 
specifically computed in the same sense that a stand-alone measure is computed that indicates 
the level of agreement, or disagreement, between computational and experimental results. The 
result of a hypothesis test is a probability that one model (the computation) can be considered as 
a surrogate for the second model (the experiment). Second, this work deals with an SRQ from 
the computational model that is represented as a probability distribution. That is, multiple 
realizations of the SRQ are computed from the model using sampling techniques, such as Monte 
Carlo sampling, and then the ensemble of these realizations is compared with the ensemble of 
experimental measurements. If one does not choose to concentrate on the probabilistic, i.e., 
nondeterministic, nature of the computational model, possibly because of the large 
computational costs involved, then the hypothesis testing approach may not be appropriate. 

Bayesian analysis has received a great deal of attention during the last two decades from 
statisticians, risk analysts, and some physicists and structural dynamicists. Although the process 
is rather involved, Bayesian analysis can be summarized in three steps. Step 1 is to construct, or 
assume, a probability distribution for each input quantity in the computational model that is 
chosen to be a random variable. Step 2 involves conditioning, or updating, the previously chosen 
probability models for the input quantities based on comparison of the computational and 
experimental results. To update the probability models, one must first propagate input probability 
distributions through the computational model to obtain probability distributions for the SRQs 
commensurate with those measured in the experiment. The updating of the input probability 
distributions, using Bayes equation, to obtain posterior distributions commonly assumes that the 
computational model is correct, i.e., the updating is conditional on the correctness of the 
computational model. Step 3 involves comparing new computational results with the existing 
experimental data or any new experimental data that might have been obtained. The new 
computational results are obtained by propagating the updated probability distributions through 
the computational model. Much of the theoretical development in Bayesian estimation has been 
directed toward optimum methods for updating statistical models of uncertain parameters in the 
computational model. In validation metrics, however, the emphasis is on methods for assessing 
the fidelity of the physics of the existing computational model. Although many journal articles 
have been published on the topic of Bayesian inference, the recent work of H a n ~ o n , ~ ~  Anderson 
et al.?* Kennedy and O’Hagan?9 Hasselman et a1.:’ Bayarri et al.,41 and Zhang and M a h a d e ~ a n ~ ~  
is particularly relevant to validation. 

From this very brief description of parameter estimation and Bayesian inference, it 
should be clear that the primary goal of both approaches is “model updating” or “model 
calibration.” Although this goal is appropriate and necessary in many situations, it is a somewhat 
different goal from that used to evaluate a validation metric. Figure 1 depicts the goal of model 
building or model calibration as the dashed-line upper feedback loop. In the figure, the loop is 
taken if the model does not adequately meet the specified accuracy requirements. It should also 
be noted that the upper feedback loop can also be taken even if the model is adequate. In such a 
case, one wants to incorporate the latest experimental information into the model and not waste 
valuable information obtained from the experiment. The lower feedback loop in Fig. 1 could be 
taken if improvements or changes are needed in the experimental measurements or if additional 
experiments are needed to reduce experimental uncertainty. 

Several researchers have taken approaches that differ from the three just mentioned; 
however, such approaches exhibit a common characteristic. Geers,’ Coleman and 
Stern?5 Sprague and Geers>6 Stern et Ea~terling,4*”~ and Oberkampf and Tmcano3 focus 
only on comparing a deterministic value of the SRQ from the computational model with the 
experimental data. That is, they do not propagate uncertain input parameters through the 

34-36 The third approach is the use of Bayesian analysis or Bayesian statistical inference. 
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computational model to obtain multiple realizations, or an ensemble, of SRQs. Geers,’ 
R ~ s s e l l , ~ ~ > ~ ~  and Sprague and G e e r ~ ~ ~  suggest various validation metrics useful for transient 
SRQs, for example, the response of a structure to a shock wave passing through the structure. 
Coleman and Stern45 and Stern et al.47 define a validation metric, but the decision of adequacy of 
agreement is based on the uncertainty in the experimental data. Roaches’ and Oberkampf*’” have 
taken exception to certain aspects of the approach by Refs. 45 and 47, specifically in determining 
the adequacy of agreement based on observed experimental uncertainty. E a ~ t e r l i n g ~ ~ , ~ ~  uses a 
linear regression function to determine a best fit of experimental data, but he does not compute a 
validation metric, i.e., a difference between computational and experimental results. Oberkampf 
and Trucano3 compute a validation metric for the case of multiple experimental measurements 
over a range of the input parameter. They assume the experimental measurement error is given 
by a normal (Gaussian) distribution, and they scale their validation metric result over the range 
from zero to unity. A value near zero occurs when there is a very large difference between 
computational and experimental results, and a value near unity occurs when nearly perfect 
agreement occurs. The precise implication of values between zero and unity is, of course, open to 
interpretation. 

3. Construction of Validation Metrics 

3.1 Recommended Features of Validation Metrics 
We believe that validation metrics should include several intuitive properties that would 

make them useful in an engineering and decision-making context. Extending the ideas of Refs. 3 
and 8, the following is a list of conceptual properties that we believe a validation metric should 
satisfy: 

1) A metric should either a) explicitly include an estimate of the numerical error in the SRQ 
of interest resulting from the computational simulation or b) exclude the numerical error 
in the SRQ of interest only if the numerical error was previously estimated, by some 
reasonable means, to be small. The primary numerical error of concern here is the error 
due to lack of spatial and/or temporal resolution in the discrete solution. Numerical error 
could be explicitly included in the validation metric, such as inclusion of an upper and a 
lower estimated bound on the error in the SRQ of interest. Although explicit inclusion of 
the numerical error in the metric seems appealing, it would add significant complexity to 
the theoretical derivation, calculation, and interpretation of the metric. By estimating 
beforehand that the numerical error is small, one can eliminate the issue from the 
calculation and interpretation of the metric. Taking this latter approach, the numerical 
error should be judged small in comparison to the estimated magnitude of the 
experimental uncertainty. 
A metric should be a quantitative evaluation of predictive accuracy of the SRQ of 
interest, including all of the combined modeling assumptions, physics approximations, 
and previously obtained physical parameters embodied in the computational model. 
Stated differently, the metric evaluates the aggregate accuracy of the computational 
model for a specific SRQ. Consequently, there could be offsetting errors or widely 
ranging sensitivities in the model that could show very accurate results for one SRQ but 
poor accuracy for a different SRQ. If there is interest in evaluating the accuracy of 
submodels or the effect of the accuracy of individual input parameters within the 
computational model, one should conduct a sensitivity analysis of the SRQ. However, 
sensitivity analysis is a separate issue from constructing a validation metric. 

2) 
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I 
3) A metric should include, either implicitly or explicitly, an estimate of the error resulting 

from postprocessing of the experimental data to obtain the same SRQ that results from 
the computational model. Examples of the types of postprocessing of experimental data 
are as follows: a) the construction of a regression function, e.g., least-squares fit, of the 
data to obtain a continuous function over a range of an input (or control) quantity; b) the 
processing of experimental data that are obtained on a very different spatial or temporal 
scale than what is modeled in the computational model; and c) the use of complex 
mathematical models of the physically measured quantities to process the experimental 
data. A case where the postprocessing described in example b might be necessary is when 
there are localized underground measurements of a pollutant concentration and the 
computational model contains a large-scale, spatially averaged permeability model. One 
might require the type of postprocessing defined in example c when very similar models 
of the physics in the computational model are also needed to process and interpret the 
experimental data. Note that in recommended property 2 mentioned above, any error 
associated with the postprocessing of the numerical solution of PDEs should be 
considered as part of the error in the computational model. 
A metric should incorporate, or include in some explicit way, an estimate of the 
measurement errors in the experimental data for the SRQ that are the basis of comparison 
with the computational model. The possible sources for measurement errors depend on a 
very wide range of issues, but a discussion of these is clearly beyond the scope of this 
~ a p e r . ~ ~ ’ ~ ~  However, measurement errors are commonly segregated into two types: bias 
(systematic) errors, and precision (random) errors. At a minimum, a validation metric 
should include an estimate of precision errors, and, to the extent possible, the metric 
should also include an estimate of bias errors. The most practical method of estimating a 
wide a range of bias errors is to use design-of-experiment techni ues to transform them 
into precision errors so that statistical procedures can be used. 
A metric should depend on the number of experimental measurements that are made of a 
given SRQ of interest. The number of measurements can refer to a number of situations: 
a) multiple measurements made by the same investigator using the same experimental 
diagnostic technique and the same experimental facility, b) multiple investigators using 
different facilities and possibly different techniques, and c) multiple measurements of a 
given SRQ over a range of input quantities (or levels) for the SRQ. The reason for 
including this issue in our recommendations is to stress the importance of multiple 
measurements in estimating the accuracy of the experimental result. We contrast our 
recommendation with the situation where one experimental measurement is made of an 
SRQ and then the experimental uncertainty is estimated based on many assumptions, 
such as previous experience concerning the error sources and also the interaction and 
propagation of contributing error sources through the data reduction process. One 
measurement with an estimated uncertainty band has much less credence than multiple 
measurements, particularly when the multiple measurements vigorously seek to identify 
possible sources of error in the measurements or they are from independent sources. (See 
the classic paper by Y ~ u d e n . ~ ~ )  
A metric should exclude any indications, either explicit or implicit, of the level of 
adequacy in agreement between computational and experimental results. Examples of the 
level of adequacy that have been improperly used, in our view, in validation metrics are 
a) comparisons of computational and experimental results that yield value judgments, 
such as “good” or “excellent”; and b) computational results that are judged to be adequate 
if they lie within the uncertainty band of the experimental measurements. We have 
stressed this issue in Sec. 2.1, particularly with regard to Fig. 1, and in Sec. 2.2. 

4) 

2 1,21,5 Y 
5 )  

6) 
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Validation metrics should be measures of agreement between computational models and 
experimental measurements; issues of adequacy or satisfaction of accuracy requirements 
should remain separate from the metric. 

Although these six conceptual properties in a validation metric seem intuitive, the 
published literature demonstrates a wide variety of views regarding what a validation metric 
should embody and how that metric should be interpreted. References 2 and 3 proposed a metric 
that satisfies all of these properties. Their metric took the approach of combining properties 2, 3 
and 4 above into one mathematical quantity, the metric itself. Specifically, they combined the 
measure of agreement between computational and experimental results, the estimate of 
experimental uncertainty, and the number of experimental replications into a single expression 
for the metric. Although this is a reasonable approach, the present authors have concluded that 
combining all three properties into the same quantity is not the best approach. The present 
approach constructs a validation metric that separates the accuracy estimation of the 
computational model from the level of confidence in estimation of the accuracy. Note that 
hypothesis testing combines these two issues, accuracy and confidence, into one measure: a 
probability measure. 

3.2 Perspectives of the Present Approach 
The present approach assesses the accuracy of the model based on comparing 

deterministic computational results with the estimated mean of the experimental measurements. 
The primary differences in the present perspective and most of the work cited above is that a) a 
stand-alone validation metric is constructed to provide a compact, statistical measure of 
quantitative agreement between computational and experimental results and b) a statistical 
confidence interval is computed that reflects the confidence in the accuracy of the experimental 
data. We concur with Ref. 8 that such a validation metric would be most effective in moving 
beyond the “viewgraph norm” mode of comparing computational and experimental results so 
that quantitative statements of accuracy can be made. This type of metric would be useful for 
situations in which a computational analyst, a model developer, or competing model developers 
are interested in quantifying which model among alternate models is most accurate for a given 
set of experimental data. In addition, this type of metric would be useful to a design engineer or a 
project engineer for specifying model accuracy requirements in a particular application domain 
of the model. It should be noted that if the application domain is outside the experimental 
measurement domain, one must account for the additional uncertainty of extrapolation of the 
model. Although we recognize that the extrapolation procedure should be dependent on both the 
error structure and the uncertainty structure in the validation domain, how this extrapolation 
should be accomplished is a complex, and unresolved, issue. 

The primary reason for our interest in deterministic computational results, as opposed to 
the approach of propagating computational input uncertainties to determine output uncertainties 
in the SRQ, is the much-lower computational costs involved in deterministic simulations. Many 
computational analysts argue that computational resources are not available to provide both 
spatially and temporally resolved solutions, as well as nondeterministic solutions, for complex 
simulations. Risk assessment of high-consequence systems, for example, safety of nuclear power 
reactors and underground storage of nuclear waste, has shown that with an adequate, but not 
excessive, level of physical modeling detail, one can afford the computational costs of 
nondeterministic simulations. However, we recognize that there is substantial resistance in many 
fields to attain both grid-resolved and nondeterministic simulations. Consequently, we believe 
there is a need to construct validation metrics that require only deterministic computational 
results. As the presently resistant fields mature further, we believe validation metrics will be 
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constructed that compare probability distributions of the SRQ from the computational model 
with probability distributions from the experimental results. It should also be noted that even if a 
computational model is assessed with a metric that uses a deterministic computational result, one 
could use the computational model in subsequent nondeterministic analyses. 

The validation metrics developed here are applicable to SRQs that do not have a periodic 
character and that do not have a complex mixture of many frequencies. For example, the present 
metrics would not be appropriate for analysis of standing or traveling waves in acoustics or 
structural dynamics. Another example of an inappropriate use would be the time-dependent fluid 
velocity at a point in turbulent flow. These types of SRQs require sophisticated time-series 
analysis and/or mapping to the frequency domain. Validation metrics constructed by Geers,' 
R ~ s s e l I , ~ ~ , ~ ~  and Sprague and G e e r ~ ~ ~  are better suited to periodic systems or responses with a 
combination of many frequencies. 

An additional focus in the present work is toward a validation metric that can be 
evaluated over a range of the SRQ of interest. That is, we construct a metric that assesses the 
computational model accuracy over the experimentally measured range of the SRQ. In Sec. 4, 
we introduce our approach by developing a validation metric for the case of the SRQ at one 
operating condition. Sec. V deals with the case where sufficient experimental data are obtained 
over the range of the SRQ so that an interpolation function can be constructed. In Sec. V, we 
develop a method of summarizing the assessment of model accuracy over the range of the 
operating condition by introducing global validation metrics. Sec. 6 deals with the case where the 
experimental data are sparse over the range of the SRQ so that a regression function must be 
constructed before the metric can be evaluated. 

4. Validation Metric for One Condition 

4.1 Development of the Equations 
In this section, the fundamental ideas of the present validation metric are developed for 

the case where the SRQ of interest is defined for a single value of an input or operating-condition 
variable. This will allow some discussion of how the present approach implements the 
recommended conceptual properties mentioned previously, as well as give an opportunity to 
review the classical development of statistical confidence intervals. Since it may be confusing 
why we begin the development of validation metrics with a discussion of confidence intervals, 
we make the following point. We are interested in obtaining an error measure between a 
deterministic computational result and the mean of a population of experimental measurements, 
for which only a finite sequence of measurements has been obtained. When this is grasped, it is 
realized that the key issue is the statistical nature of the sample mean of the measured system 
response, not the accuracy of the agreement between the computational result and the individual 
measurements. With this perspective, it becomes clear that the point of departure should be a 
fundamental understanding of the statistical procedure for estimating a confidence interval for 
the true mean. In traditional statistical-testing procedures, specifically hypothesis testing, the 
point of departure is the derivation for the confidence interval of the difference between two 
hypotheses: the computational mean and the experimental mean. 

4.1.1 Construction of a Statistical Confidence Interval 
A short review and discussion will be given for the construction of a statistical 

confidence interval. The development of confidence intervals is discussed in most texts on 
probability and statistics. The following development is based on the derivation by Devore,26 
Chapter 7. 
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I 

Let X be a random variable characterizing a population having a mean p and a standard 
deviation 0. Let x,, x,, ..., x, be actual sample observations from the population, and these are 

assumed to be the result of a random sample X , ,  X , ,  ..., X ,  from the population. Let 2 be the 
sample mean, which is a random variable, based on the random sample X, , X ,  , ..., X,, . Provided 
that yz is large, the Central Limit Theorem implies that 2 has approximately a normal 
distribution, regardless of the nature of the population distribution. Then it can be shown that the 
standardized random variable 

has an approximate normal distribution with zero mean and a standard deviation of unity. S is the 
sample standard deviation, which is a random variable, based on random samples 
X , ,  X , ,  ..., X ,  . It can also be shown, provided n is large, that the probability interval for 2 can 
be written as 

where za12 is the value of the random variable Z at which the integral of Z fiom zaI2 to foo is 

a/2. Since 2 is symmetrical and has its mean at zero, the integral of Z from -a to z-,/, is also 
equal to a/2. The total area from both tail intervals of the distribution is a. 

Equation (2) can be rearranged to show that the probability interval for p, the mean of the 
population that is the unknown quantity of interest, is given by 

Equation (3) can be rewritten as a confidence interval, i.e., a probability interval, for the 
population mean using sampled quantities for the mean and standard deviation. 

where X and s are the sample mean and standard deviation, respectively, based on n 
observations. Note that X and s are computed from the realizations X, = x,, 
X ,  = x,, ..., X, = x, . The term s/& is the standard error of the sample mean that measures 
how far the sample mean is likely to be from the population mean. The level of confidence that p 
is in the interval given by Eq. (4) can be shown to be lOO(1 -a)% . The value of a is arbitrarily 
assigned and is typically chosen to be 0.1 or 0.05, corresponding to confidence levels of 90% or 
95%, respectively. 

The confidence interval for the population mean can be interpreted in a strict frequentist 
viewpoint or in a subjectivist, or Bayesian, viewpoint. Let C be the confidence level chosen, i.e., 
C = lOO(1 -a)% , for stating that the true mean p is in the interval given by Eq. (4). The 
frequentist would state, “p is in the interval given by Eq. (4) with probability C,” which means 
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that if the experiment on which p is estimated is performed repeatedly, in the long run p will fall 
in the interval given by Eq. (4) C% of the time. The subjectivist would state,55 “Based on the 
observed data, it is my belief that p is in the interval given by Eq. (4) with probability C.” The 
reason that it cannot be strictly stated that C is the probability that p is in the interval given by 
Eq. (4) is that the true probability is either zero or one. That is, the true mean p is either in the 
interval or it is not; we simply cannot know with certainty for a finite number of samples from 
the population. Not withstanding these fine points of interpretation, we will essentially use the 
subjectivist interpretation in a slightly different form than is presented above: p is in the interval 
given by Eq. (4) with confidence C. 

Now consider the case of estimating a confidence interval for an arbitrary number of 
experimental observations n, with n as small as two. Again following Chapter 7 of Devore,26 we 
define the standardized random variable T: 

It can be shown that T has a probability distribution called a t distribution with n - 1 degrees of 
freedom only if the population distribution x is given by a normal distribution. The t 
distribution is governed by one parameter: v = n - 1, which is the number of degrees of freedom. 
As a result, the distribution is written as t ,  . For yt small, the probability density distribution for 

t ,  has a lower peak value and “fatter” tails than the standard normal distribution. This 
characteristic reflects the fact that less information is known about the population distribution 
because fewer samples have been observed, resulting in higher probability densities away from 
the sample mean. For n greater than 16, the cumulative t distribution and the cumulative normal 
distribution differ by less than 0.01. In the limit as n + 00, the t distribution approaches the 
standard normal distribution. 

For the case of two or more experimental measurements, n 2 2 ,  it is shown26 that the 
equation analogous to Eq. (4) is 

where the level of confidence is given by lOO(1- a)?? and t-+, , is the 1 - a/2 quantile of the t 
distribution for v = n - 1 degrees of freedom. Equation ( 5 )  is regularly used for hypothesis 
testing in classical statistical analyses. However, our perspective in the construction of validation 
metrics is notably different. We wish to quantify the difference between the computational 
results and the true mean of the experimental results. Stated differently, we wish to measure 
shades of gray between a computational model and an experiment-not make a “yes” or “no” 
statement about the congruence of two hypotheses. 

4.1.2 Construction of a Validation Metric Based on Confidence Intervals 
As discussed with regard to Fig. 1, the input quantities that should be used in the 

computational simulation of the SRQ of interest are those that are actually realized in the 
validation experiment. Some of these input quantities from the experiment may not be known 
precisely for various reasons, for example: a) a quantity may not have been specifically 
measured but was estimated by the experimentalist, taken from an engineering handbook of 
physical properties, or simply taken from a fabrication drawing of hardware to be used in the 
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experiment; b) a quantity may not have been specifically measured but is known to be a sample 
from a well-characterized population; and c) a quantity in the experiment may not be controllable 
from one experiment to the next, but the individual realizations of the quantity are measured so 
that the population for the entire experiment could be fairly well characterized. If these input 
quantities are considered as random input variables to the computational model, the proper 
procedure is to propagate these uncertain quantities through the model to characterize the SRQ as 
a random variable. To avoid this computational cost, as discussed previously, it is commonly 
assumed that the mean value of the SRQ can be approximated by propagating only the mean, i.e., 
the expected value, of all uncertain input parameters through the computational model. The 
accuracy of this assumption is addressed in many texts on propagation of uncertain inputs 
through a model of a physical system to obtain an uncertain SRQ (see for example, Ref. 56). 

A Taylor series can be written that shows the approximation. Let Y, be the random 
variable SRQ from the computational model; let g(*) represent the PDE with the associated 
initial conditions and boundary conditions that maps uncertain inputs to the uncertain SRQ; and 
let xi, where i = 1,2, ..., n , be the uncertain input random variables. Then the Taylor series for 
uncorrelated input random variables can be expanded about the mean of each of the input 
variables, px, , and written as56 

where E[Y,] is the expected value, i.e., the mean, of the SRQ and V a r h i )  is the variance of the 
input variables. It is seen from Eq. (6) that the first term of the expansion is simply g evaluated at 
the mean of the input variables. The second term is the second derivative of g with respect to the 
input variables. This term, in general, will only be zero if g is linear in the input variables. 
Linearity in the input variables essentially never occurs when the mapping of inputs to outputs is 
given by a differential equation, even a linear differential equation. With this approximation 
clarified, we now move on to the construction of a validation metric. 

For the validation metric we wish to construct, we are interested in two quantities. First, 
we want to estimate an error in the SRQ of the computational model based on the difference 
between the computational model and the estimated mean of the population based on the 
experimentally measured samples of the SRQ. Let y ,  be the SRQ from the computational 
model, i.e., the first term of the series expansion given in Eq. (6). Changing the notation used 
previously for the experimental measurements from X to ye, we define the estimated error in 
the computational model as 

where Y ,  is the estimated, or sample, mean based on n experiments conducted. Y ,  is given by 

where y: , ye2 , ..., ya are the individually measured results of the SRQ from each experiment. 
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Second, we wish to compute an interval that contains the true error, which we do not 
know, at a specified level of confidence. Let the true error E be defined as 

E =y,- P (9) 

where p is the true mean of the population. Writing the confidence interval expression, Eq. (5 ) ,  
for p as an inequality relation and changing the notation as just mentioned, we have 

where s is the sample standard deviation given by 

x 1 "  

Multiplying Eq. (10) by -1 and adding y ,  to each term, we have 

Substituting the expression for the true error, Eq. (9), into Eq. (12) and rearranging, one obtains 

Substituting the expression for the estimated error, Eq. (7), into Eq. (13), we can write the 
inequality expression as an interval containing the true error where the level of confidence is 
given by lOO(1- a)% : 

Using the traditional level of confidence of 90%, one can state the validation metric in the 
= y ,  - y e ,  with a confidence level of 90% following way: The estimated error in the model is 

that the true error is in the interval 

E - t0.05," . - & S ' E + t0.05,v . L j  i- -& 
Three characteristics of this validation metric should be mentioned. First, the statement of 

confidence is made concerning an interval in which the true error is believed to occur. The 
statement of confidence is not made directly concerning the magnitude of the estimated error, 
nor an interval around the computational prediction. The reason such statements cannot be made 
is that the fundamental quantity that is uncertain is the true experimental mean. Stated 
differently, although we are asking how much error there is in the computational result, the 
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actual uncertain quantity is the referent, i.e., the true experimental value, not the computational 
result. 

Second, the interval believed to contain the true error is symmetric around the estimated 
error. We can also state that the rate of decrease of the magnitude of the interval is a factor of 2.6 
when going from two experiments to three experiments. For a large number of experiments, the 
rate of decrease of the magnitude of the interval is I/&. Additionally, the size of the interval 
decreases linearly as the sample standard deviation decreases. 

Third, for small numbers of experimental measurements, the assumption must be made 
that the measurement uncertainty is normally distributed. Although this is a very common 
assumption in experimental uncertainty estimation and probably is well justified, it is rarely 
demonstrated to be true.52’53 However, for a large number of experimental measurements, as 
discussed above, the confidence interval on the mean is valid regardless of the type of probability 
distribution representing measurement uncertainty. 

As a final point in the development of our approach to validation metrics, we stress the 
primacy we give to the experimental data. As can be clearly seen from Eq. (9), the referent for 
the error measure is the experimental data; not the computational model, or some type of 
weighted average between the computational model and the experimental data. Our perspective 
is built on the proven tradition in science. However, this perspective is not without risk, 
specifically, if an undetected bias error exists in the experimental data. (See, for example, Refs. 3 
and 54, for further discussion.) 

4.2 Example: Thermal Decomposition of Foam 
As an example of the application of the validation metric just derived, consider the 

assessment of a computational model for the rate of decomposition of a polyurethane foam due 
to thermal heating. The computational model solves the energy equation and is composed of 
three major components: a) thermal diffusion through the materials involved, b) chemistry 
models for the thermal response and decomposition of polymeric materials due to high 
temperature, and c) radiation transport within the domain and between the boundaries of the 
physical system. The foam decomposition model predicts the mass and species evolution of the 
decomposing foam and was developed by Hobbs et al.57 Dowding et computed the results 
for this example using the computer code Coyote, which solves the mathematical model using a 
finite element technique.58 Three-dimensional, unsteady solutions were computed until the foam 
decomposes, vaporizes, and escapes from the container. Solution verification for the 
computational results relied on the grid-refinement studies previously conducted by Hobbs et 
al.57 These earlier grid-refinement studies estimated that the mesh discretization error was less 
than 1 % for the velocity of the foam decomposition front for mesh sizes less than 0.1 mm. 

The experiment to evaluate the computational model was composed of a polyurethane 
foam enclosed in a stainless steel cylinder that was heated using high-intensity lamps (Fig. 2). 
The experiment was conducted by Bentz and Pantuso and is reported in Hobbs et al.57 The 
position of the foam-gas interface was measured as a function of time by x-rays passing through 
the cylinder. The steel cylinder was vented to the atmosphere to allow gas to escape, and it was 
heated in three directions: top, bottom, and side. For some of the experiments, a solid stainless 
steel cylinder or hollow aluminum component was embedded in the foam. 
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Fig. 2 Schematic of foam decomposition experiment. 

The SRQ of interest is the average velocity of the foam decomposition front when the 
front has moved between 1 and 2 cm. The SRQ was measured as a function of imposed 
boundary-condition temperature. Since we are only considering one operating condition for the 
present validation-metric example, we pick the temperature condition of T = 750°C because it 
had the largest number of experimental replications. Some of the replications, shown in Table 1, 
were the result of different orientations on the heat lamps. Computational simulations by 
Dowding et showed that cylinder orientation had little effect on the velocity of the 
decomposition front. Since we are only interested in a single deterministic result from the code, 
we picked one of the Dowding et al. results for the computational SRQ. The result chosen for the 
computational SRQ was 0.2457 cdmin.  With this approximation, we assigned the variability 
resulting from the heating orientation of the cylinder to uncertainty in the experimental 
measurements. 

Table 1 Experimental data for foam decomposition, Ref. 57 
Experiment Temperature Heat V( experiment) 

No. ("C) Orientation (cdmin) 
2 750 bottom 0.2323 
5 750 bottom 0.1958 

11 750 side 0.2582 
13 750 side 0.2 154 
15 750 bottom 0.2755 

10 750 top 0.21 10 
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Using the data in Table 1 and Eqs. ( 5 ) ,  (7), (8), (1 1) and (1 5), we obtain 

number of samples = n = 6 

sample mean = V ,  = 0.23 14 c d m i n  

estimated error = ,6 = 0.2457 - 0.23 14 = 0.0143 c d m i n  

sample standard deviation = s = 0.0303 c d m i n  

degrees of freedom = n - 1 = v = 5 

t distribution for 90% confidence (v = 5) = t0.05,v = 2.015 

S 
f t0.05,v . ~ - - f 0.0249 c d m i n  

& 
true mean with 90% confidence = p - (0.2065,0.2563) c d m i n  

true error with 90% confidence - (- 0.0106,0.0392) c d m i n  

Figure 3 depicts the sample mean, the model mean, the estimated interval of the true 
mean, and the estimated error with 90% confidence. In summary form, the result of the 
validation metric is E" = 0.0143 f 0.0249 c d m i n  with 90% confidence. Since the magnitude of 
the uncertainty in the experimental data is roughly twice the estimated error, one cannot make 
any more-precise conclusions than f 0.0249 c d m i n  (with 90% confidence) concerning the 
accuracy of the model. Whether the estimated accuracy, with its uncertainty, is adequate for the 
intended use of the model is the second step in validation, as was discussed with regard to Fig. 1. 
If the estimated accuracy, with its uncertainty, is not adequate for a model-use decision, then one 
has two options. The first option, which is the more reasonable option for this case, is to reduce 
the experimental uncertainty in future measurements by obtaining additional experimental 
measurements or by changing the experimental procedure or diagnostic method to reduce the 
experimental uncertainty. The second option would be to improve, or update, the model so that it 
gives more-accurate results. However, in the present case, the error in the model is small with 
respect to the experimental uncertainty. As a result, this option would make little sense. 
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Fig. 3 Statistical and validation-metric results of foam decomposition. 

5. Validation Metric Using Interpolation 

5.1 Development of the Equations 
We are now interested in the case where the SRQ is measured over a range of the input 

variable or the operating-condition variable. For example, in the foam decomposition experiment 
just discussed, we would be interested in the velocity of the foam decomposition front as a 
function of the heating temperature of the cylinder. Another example would be the thrust of a 
rocket motor as a function of burn time. Here we consider the case of one input variable, while 
all others are held constant. This type of comparison is probably the most common between 
computational and experimental results. The present ideas could be extended fairly easily to the 
case of multiple input variables as long as the input variables were independent. 

The following assumptions are made with regard to the computational results: 
The mean value of the SRQ is obtained by using the mean value of all uncertain input 
parameters in the computational model, i.e., the first term of the series expansion given in 
Eq. (6). Input parameters include, for example, initial conditions, boundary conditions, 
thermodynamic and transport properties, geometric quantities, and body forces such as 
electromagnetic forces on the domain of the PDEs. 
The SRQ is computed at a sufficient number of values over the range of the input 
variable, thus allowing an accurate construction of an interpolation function to represent 
the SRQ. 
The following assumptions are made with regard to the experimental measurements: 
The input variable from the experiment is measured much more accurately than the SRQ. 
Quantitatively, this means that the standard deviation of the input variable is much 
smaller than the standard deviation of the SRQ. Note that this assumption allows for the 
case where the input variable is uncontrolled in the experiment but assumed to be 
accurately measured. 
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2) Two or more experimental replications have been obtained. Using the terminology of 
Coleman and Steele,52 it is desirable that Nth-order replications have been obtained, and 
possibly even replications made by different experimentalists using different facilities 
and different diagnostic techniques. 
The measurement uncertainty in the SRQ from one experimental replication to next, and 
from setup to setup, is given by a normal distribution. 
Each measurement over the range of the input parameter is independent from other 
measurements. That is, there is zero correlation or dependence between the measurement 
error in one measurement and the measurement error in any other measurement. 
The experimental measurements for each replication are well distributed over the range 
of the input variable. That is, over the range of the input variable, an interpolation 
function can be accurately constructed from each experimental replication to represent a 
continuous function of the measured SRQ. 

3 )  

4) 

5 )  

With these assumptions, the equations developed in Sec. 4.1 are easily extended to the 
case in which both the computational result and the experimental mean for the SRQ are functions 
of the input variable. Using Eq. (7), the estimated error as a function of the input variable x can 
be written as 

where y,(x)  is the computational result and P,(x) is the estimated mean from multiple 
experimental replications, both as a function of x. Following Eq. (S), ye (x) is computed using 

Note that y: (x) is interpolated using the experimental data from the i'th experimental 
replication, i.e., the ensemble of measurements over the range of x from the i'th experiment. 
Each experimental replication need not make measurements at the same values of x because a 
separate interpolation function is constructed for each ensemble of measurements, i.e., each i'th 
experimental replication. As a result, ye  (x) is interpolated at the discrete x values that are chosen 
in the summation of Eq. (17). 

Using Eq. (5 ) ,  the true mean as a function of x can be written as the interval 

with a confidence level of 90%. Using Eq. (1 l), the standard deviation as a function of x is 

Finally, using Eq. (15), the true error as a function of x is 
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with a confidence level of 90%. 

5.2 Global Metrics 
Although Eqs. (16), (IS), and (20) provide the results of the validation metric as a 

function of x, there are some situations where it is desirable to construct a more compact, or 
global, statement of the validation metric result. For example, in a high-level project 
management review, it may be useful to quickly summarize measures of agreement for a large 
number of computational models and experimental data. A convenient method to compute a 
global metric would be to use a vector norm of the estimated error over the range of the input 
variable. The L, norm is useful to interpret the estimated average absolute error of the 
computational model over the range of the data. Using the L, norm, one could form an average 
absolute error or a relative absolute error over the range of the data. We choose to use the 
relative absolute error by normalizing the absolute error by the estimated experimental mean and 
then integrating over the range of the data. We define the average relative error metric to be 

where xu is the largest value and xl is the smallest value, respectively, of the input variable. As 
long as 1 y ,  (.)I is not near zero, the average relative error metric is a useful quantity. 

The confidence interval that should be associated with this average relative error metric is 
the average confidence interval normalized by the absolute value of the estimated experimental 
mean over the range of the data. Using Eq. (18), we define the average relative conJidence 
indicator as 

as an indicator, as opposed to an average relative confidence interval, 

because the uncertainty structure of s(x) is not maintained through the integration operator. 

would provide a quantity with which to interpret the significance of 

differently, the magnitude of should be interpreted relative to the magnitude of the 

normalized uncertainty in the experimental data, 
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There may be situations where the average relative error metric may not adequately 
represent the model accuracy because of the strong smoothing nature of the integration operator. 
For example, there may be a large error at some particular point over the range of the data that 
should be noted. It is useful to define a maximum value of the absolute relative error over the 
range of the data. Using the L_ norm to accomplish this, we define the maximum relative error 
metric as 

E Ik 
N 

E A significant difference between and El - would indicate the need to more 
Y e  max 

carefully examine the trend of the model with respect to the trend of the experimental data. 
The confidence interval that should be associated with the maximum relative error metric 

is the confidence interval normalized by the estimated experimental mean. Both the confidence 
interval and the estimated experimental mean are evaluated at the point where the maximum 

relative error metric occurs. Let the x value where occurs be defined as 2 .  Then the 

confidence interval associated with the maximum relative error metric is 
I f  lmax 

Note that in this section, Section 5, all of the functions of x, e.g., y,(x) and s (x ) ,  are 
considered as continuous functions constructed by interpolation. In the next section, Section 6, 
we consider the case where these functions are constructed using regression. 

5.3 Example: Turbulent Buoyant Plume 
As an example of the validation metric just derived, consider the assessment of a 

computational model for a turbulent buoyant plume of helium that is exiting vertically from a 
large nozzle. Turbulent buoyant plumes, typically due to the combustion of fuel-air mixtures, 
have proven to be especially difficult to model in CFD. This is primarily because of the strong 
interaction between the density field and the momentum field dominated by large turbulent 
eddies. The slowest turbulent scales are on the order of seconds in large fires, and this large-scale 
unsteadiness is beyond the modeling capability of a Reynolds-Average Navier-Stokes (RANS) 
formulation. The computational model to be evaluated here solves the continuity equation and 
the temporally filtered Navier-Stokes (TFNS) equations. The TFNS equations are similar to 
RANS e uations, but a narrower filter width is used so that large-scale unsteadiness can be 
captured. DesJardin et a1.60 have also computed turbulent buoyant plumes using large-eddy 
simulation (LES), but these simulations are even more computer intensive than TFNS 
simulations. Tieszen et a1.61 conducted an unsteady, three-dimensional simulation of a large-scale 
helium plume using the TFNS model and the standard k-E turbulence model. These models, 
among others, are implemented in the S I E W F u e g o  computer code62 being developed at 
Sandia as part of the ASC Program. 

2 9  
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The experimental data for the validation metric were obtained in the Fire Laboratory for 
Accreditation of Models and Experiments (FLAME) facility at Sandia. The FLAME facility is a 
building designed for indoor fire experiments so that atmospheric winds do not influence the 
buoyant plume and all other boundary conditions affecting the plume can be measured and 
controlled. For the present experiment, instead of the fuel-pool fire producing a buoyant plume, 
an inflow jet of helium was used (Fig. 4).60,63 The helium source is 1 m in diameter and is 
surrounded by a 0.51 m wide surface to simulate the ground plane that is typical in a fuel-pool 
fire. Inlet air is injected from outside the building at the bottom of the facility and is drawn by the 
accelerating helium plume over the ground plane surrounding the plume source. 

Laser Light 
Sheet \ 

Helium Plume Source 
V = 0.325 m / ~  * 2.6% 

Fig. 4 Experimental setup for measurements of the helium 

The experimental data consist of velocity field measurements using particle image 
velocimetry (PIV) and scalar concentration measurements using planar-induced fluorescence 
(PLIF). Here we are interested in only the PIV measurements, but details of all of the diagnostic 
procedures and uncertainty estimates can be found in O’Hern et The PIV data are obtained 
from photographing the flowfield, which has been seeded with microspheres of glass beads, at 
200 image&. Flowfield velocities are obtained in a plane that is up to 1 m from the exit of the jet 
and illuminated by a laser light sheet. The flow velocity of interest here, i.e., the SRQ that is 
input to the validation metric, is the vertical velocity component along the centerline of the 
helium jet. For unsteady flows such as this, there are a number of different oscillatory modes that 
exist within the plume. The SRQ of interest is time-averaged for roughly 10 s in the experiment, 
which is roughly seven cycles of the lowest mode in the jet. Shown in Fig. 5 are four 
experimental measurements of time-averaged vertical velocity along the centerline as a function 
of axial distance from the exit of the helium jet. The experimental realizations were obtained on 
different days, with different equipment setups, and with multiple recalibrations of the 
instrumentation. A large number of velocity measurements were obtained over the range of the 
input variable, the axial distance, so that an accurate interpolation function could be constructed. 
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Fig. 5 Experimental measurements of time-averaged vertical velocity along the centerline 
for the helium 

Tieszen et a1.61 investigated the sensitivity of their solutions to both modeling parameters 
and numerical discretization on an unstructured mesh. The key modeling parameter affecting the 
TFNS solutions is the size of the temporal filter relative to the period of the largest turbulent 
mode in the simulation. Four spatial discretizations were investigated: 0.25M, 0.5M, IM, and 
2M elements (1M = 1 ~ 1 0 ~ ) .  Each of these solutions was time-averaged over roughly seven 
puffing cycles, as were the experimental data. In comparing their 1M- and 2M-element solutions, 
we found little reason to be convinced that the 2M-element solution was spatially converged. A 
finer mesh, say, 4M elements, would greatly help in determining whether the computational 
results are actually converged. However, computational resources were not available to compute 
the 4M-element solution. As a result, we will use their 2M-element solution as only 
representative data with which to demonstrate the present validation metric. 

Using the experimental data shown in Fig. 5 and Eq. (17), noting that n = 4 ,  one obtains 
the sample mean of the measurements shown in Fig. 6. Also, using the interpolated function for 
the experimental sample mean and Eqs. (18) and (19), one obtains the interval around the 
estimated mean in which the true mean will occur with 90% confidence (Fig. 6). The 
computational solution obtained from the 2M-element mesh is also shown in Fig. 6. As is 
commonly done in the literature, an author would conclude that there is “good” agreement 
between computational and experimental results or, more boldly, claim that the code has been 
“validated.” However, as discussed previously, such statements ignore critical issues: a) “good” 
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has not been quantified; and b) accuracy requirements for the intended use of the model have 
been ignored, rendering any claim of “good” agreement questionable. 

i &*.-I sample mean from exp. (O’Hern et al) 1 
9 mean +/- 90% confidence interval 1 TFNS 2M node mesh(Tieszen et ai) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

axial distance (m) 

Fig. 6 Experimental sample mean with 90% confidence interval and computational result 
for vertical velocity in the helium plume. 

The level of (dis)agreement between computational and experimental results can be more 
critically seen by plotting the estimated error using Eq. (16) along with the 90% confidence 
interval from the experiment (see Fig. 7). The type of plot shown in Fig. 7 is the result of the 
validation metric derived in Sec. 5.1. Examining these quantities provides a magnifying glass, as 
it were, to both the error in the computational model and the uncertainty in the experimental data. 
Only courageous modelers, experimentalists, or decision makers using the model will be eager to 
examine matters this closely. Two points should be made from Fig. 7. First, the largest modeling 
error, although not large, occurs very near the beginning of the plume. Second, near this region, 
the magnitude of the modeling error is outside the 90% confidence interval of the experimental 
data, giving credence to the estimated modeling error. We remind the reader that these 
conclusions can only be defended if it is assumed that the TFNS solution is mesh converged. 
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Fig. 7 Validation metric result and 90% confidence interval for centerline velocity. 

The validation metric result shown in Fig. 7 can be quantitatively summarized, or 
condensed, using the global metrics given in Eqs. (21-24). Over the range of the data, these 
results are as follows: 

Average Relative Error = 1 1% * 9% with 90% confidence 
Maximum Relative Error = 54% * 9% with 90% confidence 

Thus, the average relative error could be as large as 20% and as small as 2% (on average) over 
the range of the data with 90% confidence due to uncertainty in the experimental data. The 
average relative error shows that the model accuracy, on average, is comparable to the average 
confidence indicator in the experimental data. Similarly, the maximum relative error could be as 
small as 45% and as large as 63% with 90% confidence due to uncertainty in the experimental 
data. The maximum relative error, 54%, which occurs at x = 0.067 m, is five times the average 
relative error, indicating a significant difference in the local character of the computational 
model and the experimental data. Note that for these experimental data, the average relative 
confidence indicator, 9%, happens to be essentially equal to the relative confidence interval at 
the maximum relative error. If one was using both the average relative error and the maximum 
relative error for a "first look" evaluation of the model, a large difference between these values 
should prompt a more careful examination of the data, for example, examination of plots such as 
Figs. 6 and 7. 



The final method of displaying the results of the validation metric is to plot the 90% 
confidence interval of the true error in velocity predicted by the computational model as a 
function of the axial distance from the exit of the jet. Using Eq. (20), one obtains the result 
shown in Fig. 8. Our best approximation of the true error in the model is the estimated error. 
However, with 90% confidence, we can state that the true error is in the interval shown in Fig. 8. 

0.4 

a, 
-0.4 

+ est. error TFNS 2M node mesh I ‘ . upper and lower 90% confidence interval 

-0.6 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

axial distance (m) 

Fig. 8 Estimated error and true error in the model with 90% confidence interval. 

Although Fig. 8 displays essentially the same data as shown in Fig. 7, Fig. 8 allows us to 
consider slightly different perspectives for assessing the model. For example, we could view Fig. 
8 from the perspectives of those who might use the validation metric results to evaluate the 
predictive capability of the computational model. A model builder, for example, would likely 
investigate the cause of the largest error, i.e., near x = 0.1 m, and explore ways to improve the 
model. For an analyst, Le., a person who is going to use the model for predictions of flowfields 
that are related to the present flowfield, the perspective is somewhat different from that of the 
model builder’s. The analyst might conclude that the accuracy of the model is satisfactory for its 
intended use and simply apply the model as it is. Alternatively, the analyst might decide to use 
Fig. 8 to incorporate a bias-error correction directly on the SRQ, i.e., the vertical velocity on the 
centerline of the plume. For example, the analyst might take any new result for the SRQ 
computed from the model and correct it according to the curve for the estimated error in Fig. 8. If 
the analyst was conducting a nondeterministic analysis, the analyst might assign a bias correction 
using a normal probability distribution to the interval shown in Fig. 8, with the expected value 
set to the estimated error and the upper and lower intervals set to the 90% quantile of the 
distribution. This procedure for model correction would clearly involve risk because it 
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completely ignores the physical cause of the error. However, if the schedule or budget for 
completing the analysis does not allow further investigation, this procedure could prove useful 
for the analyst and decision maker. 

6. Validation Metric Requiring Regression 

6.1 Development of the Equations 
We are now interested in a case similar to that described in Sec. 5 ,  where there is still one 

SRQ that is measured over a range of one input or operating-condition variable but the quantity 
of experimental data for this new case is not sufficient to construct an interpolation function. 
Consequently, a regression function (curve fit) must be constructed to represent the estimated 
mean over the range of the data. Some examples are lift (or drag) of a flight vehicle as a function 
of the Mach number, turbopump mass flow rate as a function of back pressure, and depth of 
penetration into a material during high-speed impact. Construction of a regression function is 
probably the most common situation that arises in comparing computational and experimental 
results when the input variable is not time. When time-dependent SRQs are recorded, the 
temporal resolution is typically high so that the construction of a validation metric would be 
analogous to the situation discussed in Sec. 5. 

Regression analysis procedures are well developed in classical statistics for addressing 
how two or more variables are related to each other when one, or both, contain random 
uncertainty. We are interested here in the restricted case of univariate regression, i.e., how one 
variable (the SRQ) relates to another variable (the input variable). The two assumptions 
pertaining to the computational results discussed in Sec. 5.1 are also made for the present case. 
The first four assumptions pertaining to the experimental measurements discussed in Sec. 5.1 are 
also made for the present case. In addition to these, the following assumption is made with 
regard to the experimental uncertainty: The standard deviation of the normal distribution that 
describes the measurement uncertainty is constant over the entire range of measurements of the 
input parameter. It should also be noted that this assumption is probably the most demanding of 
the experimental measurement assumptions listed. 

In the present development, it was initially thought that traditional confidence intervals in 
regression analysis could be applied to the construction of the validation metric. (See, for 
example, Ref. 26 for a description of the traditional development of confidence intervals in 
regression analysis.) We realized, however, that the traditional development only applies to the 
case of a specific, but arbitrary, value of the input parameter. That is, the traditional confidence 
interval is a statement of the accuracy of the estimated mean as expressed by the regression for 
point values of the input parameter x. The traditional confidence interval is written for p 
conditional on a point value of x, say, x*, i.e., p[Fe (x) I x *] . As a result, the traditional 
confidence-interval analysis cannot be applied to the case of a validation metric over a range of 
the input variable. 

A more general statistical analysis procedure was found that develops a confidence 
interval for the entire range of the input That is, we wish to determine the 
confidence interval that results from uncertainty in the regression coefficients over the complete 
range of the regression function. The regression coefficients are all correlated with one another 
because they appear in the same regression function that is fitting the experimental data. This 
type of confidence interval is typically referred to as a simultaneous confidence interval, a 
simultaneous inference, or a confidence region so that it can be distinguished from traditional (or 
single-comparison) confidence intervals. 
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Since the quantity of experimental data is not sufficient to construct an interpolating 
function, we must represent the estimated mean of the data, ye(.), as a regression function and 
write 

where f(x; .) is the chosen form of the regression function over the range of the input parameter 
x; e,, 8 2 ,  ..., 8, are the unknown coefficients of the regression function; and E is the random 
measurement error. A key simplification in solving for the regression coefficients occurs when 
the coefficients appear linearly in the regression function. The linear regression case would be 
written as 

Note that regardless of the functions f ,  (x), this equation is linear in 1 3 ~ .  If the additional 
simplification is made that Eq. (26) is also linear in x, then one has 

For this case, the equations for the coefficients can be analytically derived using a least-squares 
fit of the experimental data. The resulting equations are given in Miller,64 and the simultaneous 
confidence intervals are usually called the Scheffe confidence intervals. 

For the general nonlinear case, Eq. (25) can be written as 

y, (x) = f ( x; e) + & (27) 

where 6 is the vector of unknown regression coefficients. Let the set of n experimental 
measurements of the SRQ of interest be given by 

Using a least-squares fit of the experimental data, it can be s h o ~ n ~ ~ , ~ ~  that the error sum of 
squares S (6) in p-dimensional space is 

- 
The vector that minimizes S ( 6 )  is the solution vector, and it is written as 8 . This system of 
simultaneous, nonlinear equations can be solved by various software packages that compute 
solutions to the nonlinear least-squares problem. 

Draper and Smith65 and Seber and Wild66 discuss a number of methods for the 

computation of the confidence regions around the point 6 in p-dimensional space. For any 

specified confidence level lOO(1 -a)?? ,  a unique region envelops the point 8 .  For two 

- 
- 
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regression parameters, (0,,0, ), we have a two-dimensional space, and these regions are contours 
that are similar to ellipses with a curved major axis. For three parameters, (0,, 0,, e,), we have a 
three-dimensional space, and these regions are contours that are similar to bent ellipsoids and 
shaped like a banana. A procedure that appears to be the most robust to nonlinear features in the 
equations,66 and one that is practical whenp is not too large, is to solve an inequality for the set 
of e :  

8 such that S (  e) I S (  ;)I1 + -F( P p ,  n - p ,  1 - a )  
n - p  

In Eq. 30, F k , ,  v,, 1 - a )  is the F probability distribution, v, is the first parameter specifying 
the number of degrees of freedom, v, is the second parameter specifying the number of degrees 
of freedom, 1 -a is the quantile for the confidence interval of interest, and n is the number of 
experimental measurements. 

We would like to make a quantitative assessment of the global modeling error by 
appealing to Eqs. (21-24). However, the average relative confidence indicator, Eq. (22), and the 
confidence interval associated with the maximum relative error, Eq. (24), are based on 
symmetric confidence intervals, i.e., Eq. (18). Since we no longer have symmetric confidence 
intervals, we approximate these intervals by taking the average half-width of the confidence 
interval over the range of the data, and the half-width of the confidence interval at the maximum 
relative error, respectively. As a result, we now have 

for the average relative confidence indicator and 

for the half-width of the confidence interval at the maximum relative error. S' (x) and s- (x) are 
the upper and lower confidence intervals, respectively, as a function of x. 

6.2 Solution of the Equations 
We consider a geometric interpretation of Eq. (30) to facilitate the numerical evaluation 

of the inequality. We seek the complete set of 8 values that satisfy the inequality. For a given 
confidence level a, the inequality describes the interior of a p-dimensional hypersurface in e 
space. Thus, for p = 2 ,  it describes a confidence region, bounded by a closed contour, in the 
parameter space (0,,0, ). An example of a set of such contours is depicted in Fig. 9. As the 
confidence level increases, the corresponding contours describe larger and larger regions about 

the least-squares parameter vector 6 .  To determine the confidence intervals associated with the 
regression equation, Eq. (25), we must determine all e lying within (and on) the desired contour, 
Eq. (30). The confidence intervals are determined by computing the envelope of regression 
curves resulting from all 8 lying within the confidence region. One may ask why the regression 

- 
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function must be evaluated over the entire confidence region. This must be done because the 
nonlinear regression function can have maxima and minima anywhere within the confidence 
region. 

0.48 0.5 0.52 0.54 0.56 0.58 0.6 
or 

Fig. 9 Example of various confidence regions for the case of two regression ram t rs. 

The numerical algorithm employed in the present work discretizes the interior of the 
confidence region using several contour levels that lie within the highest confidence contour. For 
example, suppose we wish to calculate the 90% confidence interval given the confidence regions 
depicted in Fig. 9. We would evaluate the regression equation at a number of points, say, 20, 
along the entire 90% contour. Then we would do the same along the 80% contour, the 70% 
contour, and so on, down to the 10% contour. With all of these regression-function evaluations, 
we would then compute the maximum and minimum of the function over the range of the input 
parameter x. This would provide reasonably good coverage of the 90% confidence interval of the 
regression function. If more precision was needed, one could choose more function evaluations 
along each contour and compute each contour in 1% increments of the confidence level. 

For a three-dimensional regression parameter space, slices can be taken along one 
dimension of the resulting three-dimensional surface, and each slice can be discretized in the 
manner described for the two-dimensional case. Generalizing to N dimensions, one may generate 
a recursive sequence of hypersurfaces of lower dimension until a series of two-dimensional 
regions are obtained and evaluation over all of the two-dimensional regions gives the desired 
envelope of regression curves. 

6.3 Example: Compressible Free-Shear Layer 
The example chosen for the application of the validation metric derived in Sec. 6.1 is 

prediction of compressibility effects on the growth rate of a turbulent free-shear layer. An 
introduction to the problem is given, followed by a discussion of the available experimental data. 
Details of the computational model and verification of the numerical solutions are then described 
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along with the validation metric results. A more detailed discussion of the experimental and 
computational analysis can be found in a paper by Barone et al.67 

6.3.1 Problem Description 
The planar free-shear layer is a canonical turbulent flow and a good candidate for use in a 

unit-level validation study. Figure 10 shows the general flow configuration in which a thin 
splitter plate separates two uniform streams (numbered 1 and 2) with different flow velocities 
and temperatures. The two streams mix downstream of the splitter-plate trailing edge, forming 
the free-shear layer within which momentum and energy are diffused. For a high-Reynolds- 
number flow, the boundary layers on both sides of the plate and the free-shear layer are 
inevitably turbulent. In the absence of any applied pressure gradients or other external 
influences, the flowfield downstream of the trailing edge consists of a shear-layer development 
region near the edge, followed by a similarity region. Within the development region, the shear 
layer adjusts from its initial velocity and temperature profiles inherited from the plate boundary 
layers. Further downstream in the similarity region, the shear-layer thickness 6(x) grows linearly 
with streamwise distance x, resulting in a constant value of dS /dx .  

_-- 

Fig. 10 Flow configuration for the turbulent free-shear layer. 

Of particular interest in high-speed vehicle applications is the behavior of the shear layer 
as the Mach number of one or both streams is increased. A widely accepted parameter 
correlating the shear-layer growth rate with compressibility effects is the convective Mach 
number, which was defined by Bogdanoff for mixing two streams of the same gas: 

where u is the fluid velocity and c is the speed of sound. It has been found experimentally that an 
increase in the convective Mach number leads to a decrease in the shear-layer growth rate for 
fixed velocity and temperature ratios of the streams. This is usually characterized by the 
compressibility factor a, which is defined as the ratio of the compressible growth rate to the 
incompressible growth rate at the same velocity and temperature ratios: 



6.3.2 Experimental Data 
Experimental data on high-speed shear layers are available from a number of independent 

sources. The total collection of experimental investigations employs a wide range of diagnostic 
techniques within many different facilities. Comparisons of data obtained over a range of 
convective Mach numbers from various experiments indicate a significant scatter in the data (see 
e.g., Lele69). Recently, Blottner (reported in Ref. 67) carefully reexamined the available data and 
produced a recommended data set that exhibits a much lower spread. The guidelines for his 
filtering and reanalysis of the data were as follows: 

1) Shear-layer-thickness data based on pitot measurements or optical photographs were not 

2) Data given for shear layers that were not clearly fully developed were rejected. 
3) A consistent method was used to estimate the incompressible growth rate ( d G / d ~ ) ~ ,  given 

considered reliable and were rejected. 

the experimental flow conditions for each experiment considered. 

Blottner’s resulting ensemble of data (from Refs. 68 and 70-80) is presented in Fig. 1 1. The data 
are organized into groups of sources, some of which are themselves compilations of results from 
several experiments. 
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6.3.3 Computational Model 
They 

used the Favre-averaged compressible Navier-Stokes equations with the standard k-E turbulence 
model.81 The low-Reynolds-number modification to the k-E model of Nagano and Hishidas2 was 
applied near the splitter plate. Most turbulence models in their original form do not correctly 
predict the significant decrease in shear-layer growth rate with increasing convective Mach 
number, necessitating inclusion of a compressibility correction. Several compressibility 
corrections, derived from a variety of physical arguments, are widely used in contemporary CFD 
codes. In this study, the dilatation-dissipation compressibility correction of Zemans3 is used. 

The solutions were computed using SACCARA (Sandia Advanced Code for 
Compressible Aerothermodynamics Research and Analy~is ) , ’~’~~ which employs a block- 
structured, finite volume discretization method. The numerical fluxes are constructed with the 
Symmetric TVD scheme of Yee,86 which gives a second-order convergence rate in smooth flow 
regions. The equations are advanced to a steady state using the LU-SGS scheme of Yoon and 
J a m e ~ o n . ~ ~  Solutions were considered iteratively converged when the L2 norm of the momentum 
equation residuals decreased eight orders of magnitude. Numerical solutions were obtained over 
the convective Mach number range of the experimental data, from 0.1 to 1.5, in increments of 
0.14. 

For each convective Mach number, solutions were calculated on three grids: coarse, 
medium, and fine. The grids are uniform in the streamwise, or x, direction, and stretched in the 
cross-stream, or y direction, so that grid cells are clustered within the shear layer. The cells are 
highly clustered in the y direction near the trailing edge and become less clustered with 
increasing x to account for the shear-layer growth. Richardson extrapolation was used to 
estimate the discretization error on (d6/dx).  The maximum error in the fine-grid solution was 
estimated to be about 1% at M c  = 0.1 and about 0.1% at M ,  = 1.5 . 

We defined 6 using the velocity-layer-thickness definition (see Ref. 67 for details). As 
mentioned previously, the thickness grows linearly with x only for large x due to the presence of 
the development region, which precedes the similarity region. Given that the growth rate actually 
approaches a constant value only asymptotically, the thickness as a function of x is fit with a 
curve that mimics this functional form. The function used for the fit is 

For the present study, we use the simulation results computed by Barone et 

6,ll-14 

6(x) = po + p,x + p$ (35 )  

which leads to a growth rate that approaches p, as x becomes large. The coefficient p, is taken 
to be the actual fully developed shear-layer growth rate. 

Following extraction of the compressible growth rate, ( d 6 / d ~ ) ~  , the incompressible 
growth rate, (d6/d.x)i, must be evaluated at the same velocity and temperature ratio. 
Incompressible or nearly incompressible results are difficult to obtain with a compressible CFD 
code. Therefore, the incompressible growth rate was obtained by computing a similarity solution 
for the given turbulence model and flow conditions. The similarity solution is derived by 
Wilcoxsl in his turbulence modeling text and implemented in the MIXER code, which is 
distributed with the text. The similarity solution is computed using the same turbulence model as 
the Navier-Stokes calculations, but under the assumptions that a) the effects of laminar viscosity 
are negligible and b) there exists zero pressure gradient. 
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6.3.4 Validation Metric Results 
The quantities 6 and dS/dx are post-processed from the finite-volume computational 

solution and the MIXER code, but the system response quantity of interest for the validation 
metric is the compressibility factor, Q . Before the validation metric result can be computed, we 
must prescribe a form for the nonlinear regression function to represent the experimental data in 
Fig. 11. It is important that the proper functional behavior of the data, established through 
theoretical derivation or experimental measurement, should be reflected in the form of the 
regression function. For the compressible shear layer, we know that @ must equal unity, by 
definition, in the incompressible limit M ,  + 0 . Experimental observations and physical 
arguments also suggest that @ +constant as M ,  becomes large. These considerations lead to 
the following choice of the regression function, taken from Paciorri and Sabetta88: 

Using Eq. (36) and the experimental data shown in Fig. 11, we used the MATLABs9 
function nlinzt fi-om the Statistics Toolbox to calculate the following regression coefficients: 

A A h 

8, = 0.5537,8, = 31.79,8, = 8.426 (37) 

We now compute the 90% confidence interval of the regression function Eq. (36), with 

the 6 values given in Eq. (37) and the inequality constraint given by Eq. (30). We use the 
method outlined in Sec. 6.2 to compute the 90% confidence region in the three-dimensional 
space described by 8, ,  8,, and 8,. The resulting confidence region, pictured in Fig. 12, 
resembles a curved and flattened ellipsoid, especially for small values of 8,. The elongated 
shape in the 8, direction indicates the low sensitivity of the curve fit to 8, relative to the other 
two regression parameters. Evaluation of the regression function Eq. (36) for all 6 lying within 
the 90% confidence region yields the desired simultaneous confidence intervals. 

- 
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Fig. 12 Three-dimensional 90% confidence region for the regression fit to the shear-layer 
experimental data. 

Figure 13 shows the final result of the analysis in graphical form: a plot of the 
experimental data along with the regression fit, the 90% confidence interval, and the 
computational simulation result. Concerning the 90% confidence interval, it is seen that the 
largest uncertainty in the experimental data occurs for large M e .  This uncertainty is primarily a 
result of the uncertainty, i.e., the 90% confidence interval, in the 8, parameter of the regression 
function. From the viewpoint of the design of needed validation experiments, one can conclude 
that future experiments should be conducted at higher convective Mach numbers to better 
determine the asymptotic value of @ .  Concerning the error assessment of the k-E model, it is 
seen that the Zeman compressibility correction predicts a nearly linear dependence of the 
compressibility factor on M ,  over the range 0.2 5 M ,  51.35. One could claim that the trend is 
correct, i.e., the Zeman model predicts a significant decrease in the turbulent mixing as the 
convective Mach number increases; however, the Zeman model does not predict the nonlinear 
dependency on M e .  We did not compute any simulation results for M e  > 1.5 and, as a result, 
did not determine the asymptotic value of @ for the Zeman compressibility correction. 
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However, the solutions for M c  = 1.36 and M ,  = 1.50 suggest that the asymptotic value is near 
= 0.49. 
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Fig. 13 Comparison of the simulation result with the experimental data, nonlinear 
regression curve, and 90% simultaneous confidence interval. 

The estimated error of the model as a function of M ,  using Eq. (16) is plotted in Fig. 14 
along with the 90% confidence interval from the experimental data. This plot presents the 
validation metric result, i.e., the difference between computation and the regression fit of the 
experimental data, along with the 90% confidence interval representing the uncertainty in the 
experimental data. As pointed out previously in the helium-plume example, the validation metric 
makes a critical examination of both a computational model and the experimental data. With this 
plot, it is seen that there is a slight underprediction of turbulent mixing in the range 
0.3 I M ,  I 0.6, and a significant overprediction of turbulent mixing in the range 0.7 I M ,  51.3. 
Examining an error plot such as this, one could conclude that the Zeman model does not capture 
the nonlinear trend of decreasing turbulent mixing with increasing convective Mach number. 
Whether the model accuracy is adequate for the requirements of the intended application is, of 
course, a completely separate conclusion. 
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Fig. 14 Validation metric result and 90% confidence interval for a. 

Note that in Fig. 14 the confidence intervals are not symmetric with respect to zero. In the 
case of nonlinear regression, specifically Eq. (34) here, the nonlinear function need not possess 
any symmetric properties with respect to the regression parameters. Therefore, evaluation of the 
nonlinear function over the set of e satisfying Eq. (30) results in asymmetric confidence 
intervals over the range of the input parameter. For the shear-layer example, Eq. (36) is evaluated 
over the volume of regression coefficients shown in Fig. (12). 

Using Eqs. (21), (23), (36) and (37), the results for the k-E model with the Zeman 
compressibility correction over the range 0 I M ,  I I .5 are as follows: 

Average Relative Error = 13% f 9% with 90% confidence 

Maximum Relative Error = 35% k 10% with 90% confidence. 

The average error of 12%, though not alarmingly large, is clearly larger than the average 
experimental confidence indicator. As in the helium-plume example, we encounter a maximum 
error that is noticeably larger than the average error, i.e., roughly a factor of three. From Fig. 14 
it can be found that the maximum absolute error occurs at Me = 0.83. The maximum relative 
error, however, occurs at M ,  =0.88. At this value of M e ,  one determines that the 90% 
confidence interval is f 10%. 

7. Conclusions and Future Work 

The validation metrics derived here are relatively easy to compute and interpret in 
practical engineering applications. When nonlinear regression functions are required for the 
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metric, the nonlinear regression function requires a software package, such as Mathematica or 
MATLAB, to perform the computations. The interpretation of the present metrics in engineering 
decision making should be clear and understandable to a wide variety of technical staff (analysts, 
model builders, and experimentalists) and management. The metric result has the following 
form: estimated error of the model & an interval that represents experimental uncertainty with 
90% confidence. The present metrics can be used to compare the modeling accuracy of different 
competing models, or they can help to assess the adequacy of the given model for an application 
of interest. We point out that how the result of a validation metric relates to an application of 
interest, especially if there is significant extrapolation of the model for the application, is a 
separate and more complex issue. Although this issue is not addressed here, it is critical to 
estimation of computational modeling uncertainty for complex engineering systems. 

The validation metrics presented should apply to a wide variety of physical systems in 
fluid dynamics, heat transfer, and solid mechanics. If the SRQ is a complex time-varying 
quantity, such as velocity at a point in a turbulent flow, then the quantity should be time- 
averaged to obtain a steady state. If it is inappropriate to time-average the SRQ of interest and it 
has a periodic character, or a complex mixture of many periods, such as modes in structural 
dynamics, then the present metrics would not be appropriate. These types of SRQs require 
sophisticated time-series analysis and/or mapping to the frequency domain. In addition, the 
present metrics directly apply to single SRQs that are a function of a single input, or control, 
quantity. Future work will extend the present approach to metrics that would apply to single 
SRQs that are a function of multiple input quantities. 
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